Linear Projective Non-Negative Matrix Factorization
نویسندگان
چکیده
منابع مشابه
Convergent Projective Non-negative Matrix Factorization
In order to solve the problem of algorithm convergence in projective non-negative matrix factorization (P-NMF), a method, called convergent projective non-negative matrix factorization (CP-NMF), is proposed. In CP-NMF, an objective function of Frobenius norm is defined. The Taylor series expansion and the Newton iteration formula of solving root are used. An iterative algorithm for basis matrix...
متن کاملDiscriminant Projective Non-Negative Matrix Factorization
Projective non-negative matrix factorization (PNMF) projects high-dimensional non-negative examples X onto a lower-dimensional subspace spanned by a non-negative basis W and considers W(T) X as their coefficients, i.e., X≈WW(T) X. Since PNMF learns the natural parts-based representation Wof X, it has been widely used in many fields such as pattern recognition and computer vision. However, PNMF ...
متن کاملSemi-Supervised Projective Non-Negative Matrix Factorization for Cancer Classification
Advances in DNA microarray technologies have made gene expression profiles a significant candidate in identifying different types of cancers. Traditional learning-based cancer identification methods utilize labeled samples to train a classifier, but they are inconvenient for practical application because labels are quite expensive in the clinical cancer research community. This paper proposes a...
متن کاملBayesian Non-negative Matrix Factorization
We present a Bayesian treatment of non-negative matrix factorization (NMF), based on a normal likelihood and exponential priors, and derive an efficient Gibbs sampler to approximate the posterior density of the NMF factors. On a chemical brain imaging data set, we show that this improves interpretability by providing uncertainty estimates. We discuss how the Gibbs sampler can be used for model ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research Journal of Applied Sciences, Engineering and Technology
سال: 2013
ISSN: 2040-7459,2040-7467
DOI: 10.19026/rjaset.6.3880